Standardized Acceleration Processing for Airport Pavement Roughness Evaluation

Gordon F. Hayhoe, Ph.D.

2014 FAA Worldwide Airport Technology Transfer Conference Galloway, New Jersey, U.S.A. August 6, 2014

Outline

- 1. International Standards Organization (ISO) old vibration limit criteria.
- 2. Aircraft center of gravity (CG) and cockpit peak accelerations with different bandwidths.
- 3. New ISO acceleration weighting functions and index functions.
- 4. ProFAA and ProView used for comparison between measured and simulated aircraft responses.

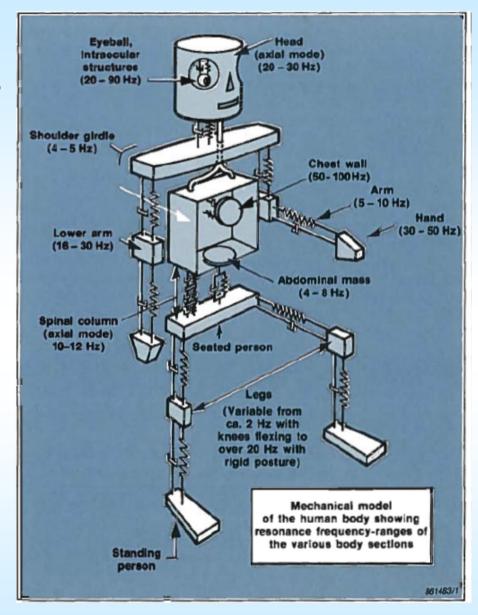
Mechanical Model of the Human Body

Resonant Frequencies

Head: 20 - 30 Hz

Arm: 5 - 10 Hz

Abdominal Mass: 4 - 8 Hz


Eyeball: 20 - 90 Hz

Spinal Column: 10 – 12 Hz

Taken from Brüel & Kjær document br056.pdf, "Primer: Human Vibration,"

http://www.bksv.co.uk/doc/br056.pdf

See also Brüel & Kjær document bn1330.pdf, "Mechanical Vibration and Shock Measurements," http://www.bksv.co.uk/doc/bn1330.pdf

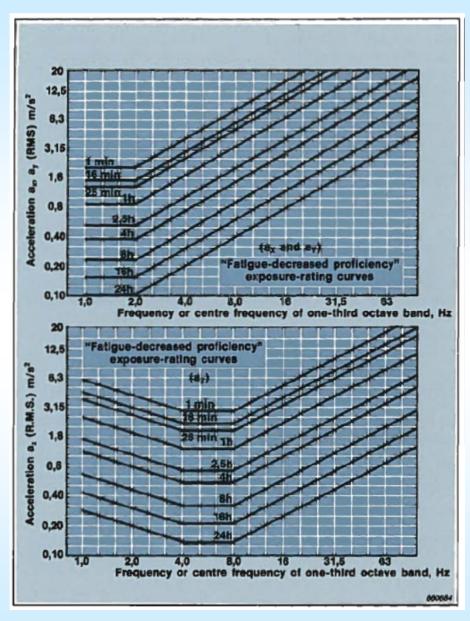
FAA Worldwide Airport Technology Transfer Conference

Video of Resonance of Internal Organs Under Vertical Vibration.

http://www.youtube.com/watch?v=n5-BeQXC29Q

Whole Body Vibration Demonstration

Prof. Dupuis, Dr. Christ edited by Dr. Johanning 1969


Old ISO Human Response Limits (ISO 2631-1:1985)

- 1. Measure acceleration in x-, y-, or z-direction.
- 2. Compute the r.m.s. acceleration in one-third octave bands with center frequencies of 1 Hz to 100 Hz (see the horizontal axis in the figure.
- 3. Find the allowable time of exposure from the chart.
- 4. The top line is for 1 minute exposure and the bottom line is for 24 hours.
- 5. The vertical scale is in m/s².
- 6. Time of exposure limits (or sensitivity to vibration) are functions of frequency. On average, people are most sensitive to vertical vibration between center frequencies of 4 to 8 Hz.

Taken from Brüel & Kjær document br056.pdf, "Primer: Human Vibration,"

http://www.bksv.co.uk/doc/br056.pdf

See also Brüel & Kjær document bn1330.pdf, "Mechanical Vibration and Shock Measurements," http://www.bksv.co.uk/doc/bn1330.pdf

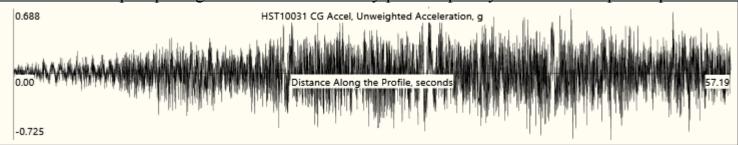
FAA Worldwide Airport Technology Transfer Conference

Latest ISO Human Response Limits (ISO 2631-1:1997)

- ◆ The procedure has been reversed:
 - 1. Apply a set of four weighting functions to normalize the measured acceleration signal to give a flat response with respect to human sensitivity to vibration.
 - 2. Compute the r.m.s. of the weighted acceleration signal.
 - 3. Compare the r.m.s. value with published criteria of correlations.

Importance of the New Procedure to Aircraft Response Analysis

- ◆ A standardized procedure is available for processing an accelerometer signal before applying limit criteria.
- ♦ For example, peak accelerations in the range 0.3 to 0.4 g (gravity units, 1 g = 9.807 m/s^2) are frequently used as limit criteria for acceptable aircraft response to pavement roughness.
- ◆ But the data processing conditions are not usually specified or, even, reported.

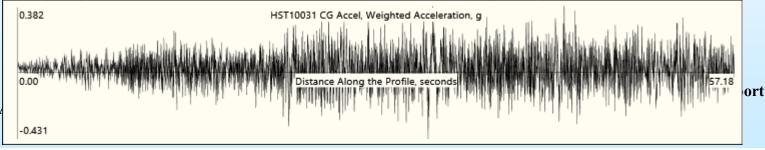

Example of Measured Accelerations Processed to Different Bandwidths

- ◆ Aircraft: FAA instrumented Boeing 727-100QC.
- ◆ Accelerometers at the CG and on the cockpit floor at the pilot's seat.



727-100QC CG Accelerations


Raw data. Sample spacing = 0.00467 seconds. Nyquist frequency = 117.2 Hz. Upward peak = 0.725.

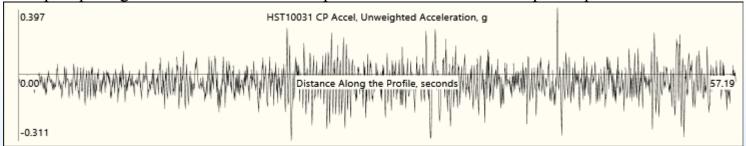

Sample spacing = 0.00467 seconds. Low-pass filter cutoff = 50 Hz. Upward peak = 0.608.

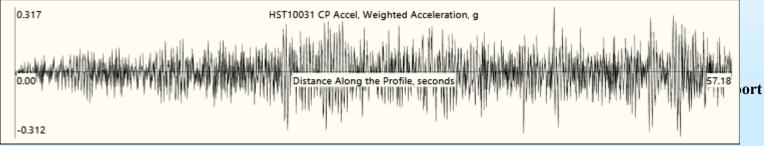
Sample spacing = 0.00467 seconds. Low-pass filter cutoff = 10 Hz. Upward peak = 0.434.

Sample spacing = 0.00467 seconds. ISO weighting functions. Upward peak = 0.431.

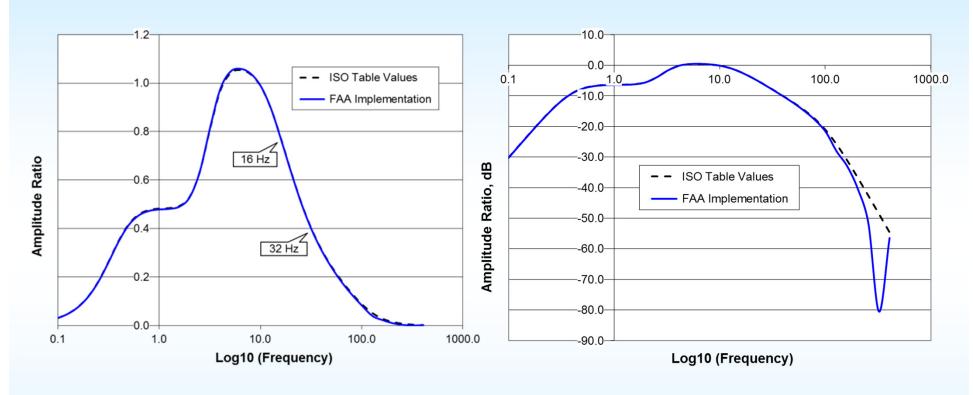


727-100QC Cockpit Accelerations


Raw data. Sample spacing = 0.00467 seconds. Nyquist frequency = 117.2 Hz. Upward peak = 0.457.


Sample spacing = 0.00467 seconds. Low-pass filter cutoff = 50 Hz. Upward peak = 0.399.

Sample spacing = 0.00467 seconds. Low-pass filter cutoff = 10 Hz. Upward peak = 0.0.311.


Sample spacing = 0.00467 seconds. ISO weighting functions. Upward peak = 0.312.

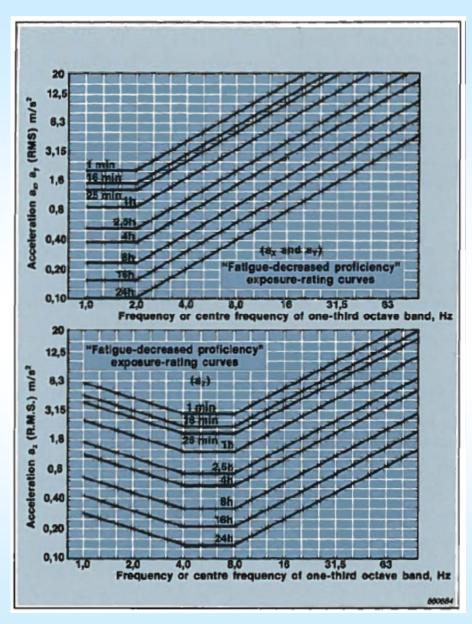
ISO 6321 Weighting Functions

- $\bullet |H_{\text{Overall}}(p)| = |H_{\text{l}}(p)| \cdot |H_{\text{t}}(p)| \cdot |H_{\text{h}}(p)| \cdot |H_{\text{s}}(p)|$
- 1. Low pass section, $|H_1(p)| = \left| \frac{1}{1 + \sqrt{2} p/\omega_2 + (p/\omega_2)^2} \right| = \sqrt{\frac{f_2^4}{f^4 + f_2^4}}$.
- 2. Acceleration-velocity transition, $|H_t(p)|$.
- 3. High pass section, $|H_h(p)|$.
- 4. Upward step, $|H_s(p)|$.
- ◆ Apply each of the filters by integrating the acceleration signal in the order above using a Runge-Kutta procedure.
- ◆ The weighting functions were originally implemented for use in the subjective pilot's rating study.

Transfer Function of |H_{Overall}(f)|

Absolute Amplitude Ratio

Amplitude Ratio in Decibels


Old ISO Human Response Limits (ISO 2631-1:1985)

- 1. Measure acceleration in x-, y-, or z-direction.
- 2. Compute the r.m.s. acceleration in one-third octave bands with center frequencies of 1 Hz to 100 Hz (see the horizontal axis in the figure.
- 3. Find the allowable time of exposure from the chart.
- 4. The top line is for 1 minute exposure and the bottom line is for 24 hours.
- 5. The vertical scale is in m/s².
- 6. Time of exposure limits (or sensitivity to vibration) are functions of frequency. On average, people are most sensitive to vertical vibration between center frequencies of 4 to 8 Hz.

Taken from Brüel & Kjær document br056.pdf, "Primer: Human Vibration,"

http://www.bksv.co.uk/doc/br056.pdf

See also Brüel & Kjær document bn1330.pdf, "Mechanical Vibration and Shock Measurements," http://www.bksv.co.uk/doc/bn1330.pdf

FAA Worldwide Airport Technology Transfer Conference

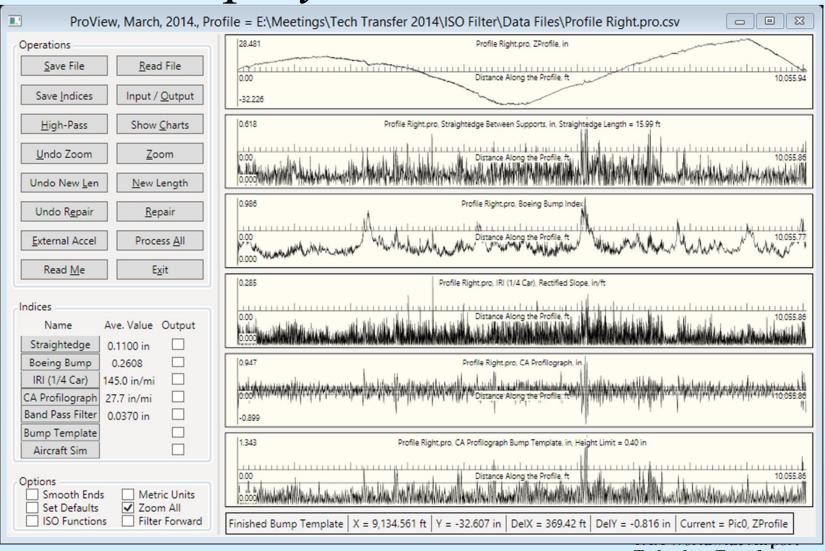
Discomfort Criteria in Annex C.2.3 of ISO 2631-1:1997

Weighted RMS, m/s ²	Discomfort Level
Less than 0.315	not uncomfortable
0.315 to 0.63	a little uncomfortable
0.5 to 1.0	fairly uncomfortable
0.8 to 1.6	uncomfortable
1.25 to 2.5	very uncomfortable
Greater than 2.0	extremely uncomfortable

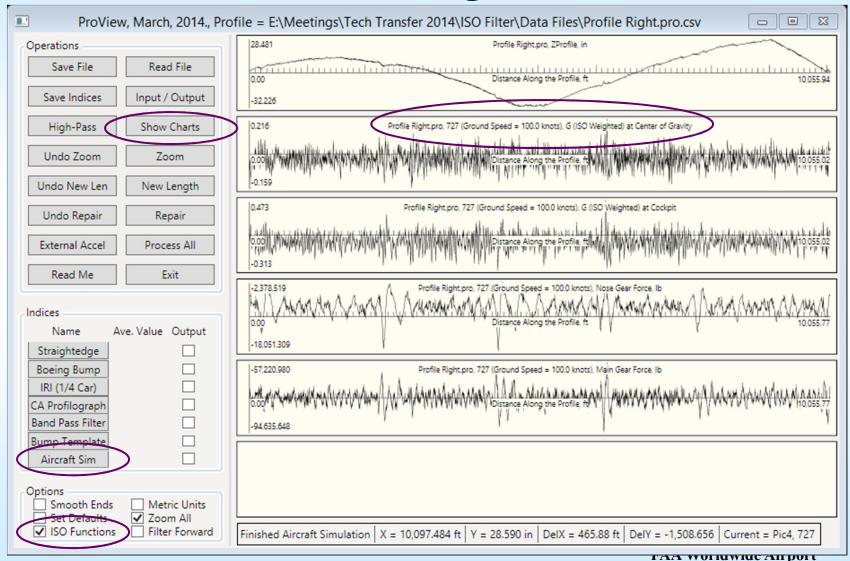
Index Computations, Including Additional Indices for Shock

Index Name	Computation Formula
Weighted r.m.s.	$a_{\mathbf{W}} = \left[\frac{1}{T} \int_{0}^{T} a_{\mathbf{W}}^{2}(t) dt\right]^{\frac{1}{2}}$
Running r.m.s. ($\tau = 1 \text{ second}$) MTVV = Maximum $a_W(t_0)$	$a_{W}(t_{0}) = \left\{\frac{1}{\tau} \int_{t_{0}-\tau}^{t_{0}} \left[a_{W}(t)\right]^{2} dt\right\}^{\frac{1}{2}}$
Fourth Power Vibration Dose	$VDV = \left\{ \int_{0}^{T} \left[a_{W}(t) \right]^{4} dt \right\}^{\frac{1}{4}}$
Spinal Response Acceleration Dose	Neural Network

Note: See the standard for more details and instructions on how to apply the indices.


ProFAA

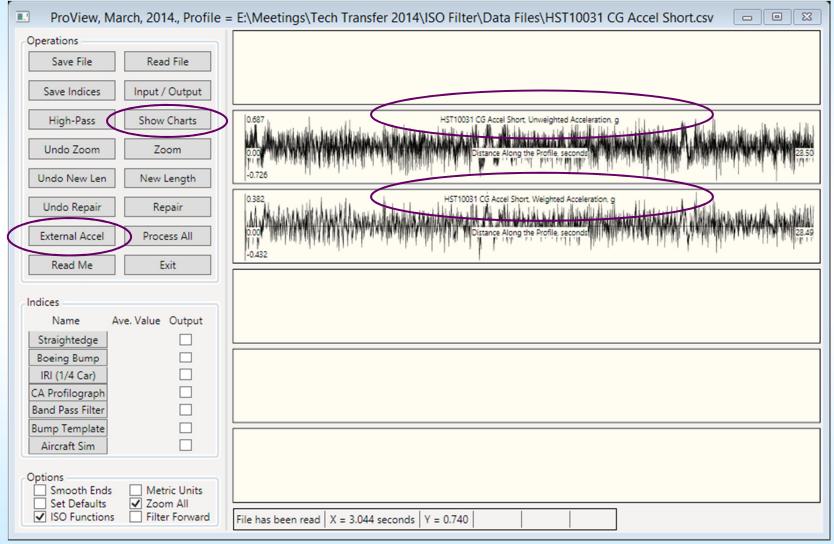
- ◆ ProFAA is the FAA's computer program for analyzing airport pavement longitudinal roughness profiles. It is written in VB6. Roughness index values can be computed for the following.
 - ◆ Physical straightedge.
 - ◆ Boeing Bump.
 - ◆ California Profilograph PI with Bump Template.
 - ◆ IRI (ASTM E1926-08).
 - ◆ Band-pass filter with r.m.s. output.
 - ◆ Aircraft simulations: 727, 747, DC9, DC-10.


ProView

- ◆ ProView is a development of ProFAA and is written in VB.NET under the Windows Presentation Foundation (WPF) user interface system. Features which have been added include:
 - ◆ Three additional straightedge types.
 - ◆ Ride Number (ASTM E1489-08).
 - ◆ Adjustable band-width for the band-pass filter.
 - ◆ Accepts *.pro and *.csv profile files.
 - ◆ Reads external *.csv acceleration files.
 - ◆ Implements the ISO weighting functions for aircraft simulation accelerations and external accelerations.
 - ◆ Implements the ISO index computations.

ProView Screenshot Showing Index Displays

ProView Screenshot Showing Aircraft Simulation With ISO Weighted Accelerations



Output Text for Aircraft Simulation

	Gcg and	Gcp, gra	vity units	s, are IS) weighte	d.			
	Section	Length	Gcg RMS	Gcp RMS	Gcg M	in Gcp	Min	Nose	Main
	No.	ft					Av	e, lb	Ave, lb
	1	4,100	0.03327	0.06939	-0.135	73 -0.26	5376	5,856	70,585
	2	901	0.04152	0.06732	-0.126	26 -0.22	2734	5,926	70,821
	3	1,001	0.02867	0.0582	7 -0.081	24 -0.21	L624	5,854	70,691
Summary of Aircraft Response	4	1,001	0.03891	0.0823	1 -0.099	20 -0.24	1541	5,858	70,715
Aircraft type = 727	5	1,001	0.03596	0.0697	7 -0.117	82 -0.20	971	5,833	70,673
Aircraft speed = 170.1 ft/s = 100.8 knots	6	951	0.02594	0.0497	7 -0.060	71 -0.15	5814	5,824	70,527
Profile file = G:\Tech Transfer 2014\	7	1,102	0.03007	0.06682	-0.091	98 -0.20	0223	5,913	70,732
Profile Right.pro.csv									
Profile total length = 10,055.8 ft	Weighted	l Gcg ISO	Index val	Lues, m/s′	`2, compu	ted over	each pro	file s	ection.
Profile decimated distance step length for	Section	Length	RMS	Crest	MTVV	VDV	Spinal		
simulation = 0.8202 ft	No.	ft		Factor			Dose		
Simulation time step length = 0.004822 seconds	1	4,100							
GroundNInner = 2	2		0.40716						
Simulation inner time step length	3		0.28102						
= 0.002411 seconds	4	•	0.38177			3.28579			
	5	•	0.35267						
Center of gravity (Gcg) and cockpit (Gcp)	6		0.25443						
accelerations, gravity units.	7	1,102	0.29406	3.37327	0.39164	2.16214	1.15868		
Gcg and Gcp are ISO weighted. They are summarized									
over the full length of the profile.	_	_	Index val	Lues, m/s [,]	`2, compu	ted over	each pro	file s	ection.
Location Min Max RMS	Section	_	RMS	Crest	MTVV	VDV	Spinal		
cg -0.13573 0.18987 0.03361	No.	ft		Factor			Dose		
cockpit -0.26376 0.38369 0.06775	1	4,100	0.68050						
	2		0.66053						
Vertical landing gear forces, lb, summarized	3	•	0.57181			4.43713			
over the full length of the profile.	4	•	0.80755						
Location Min Max Average	5	•	0.68437			4.99758			
nose -9,973 -3,470 5,863	6		0.48791						
main -85,401 -56,364 70,649	7	1,102	0.65515	3.02705	0.77552	4.66564	2.06620		
ISO Index values, m/s^2, computed over the full length of the profile.									
Location RMS Crest Factor MTVV VDV	Spinal Do	ose							
cg 0.32960 5.64941 0.69563 4.60844	1.92944	l							
cockpit 0.66440 5.66333 1.56039 9.49240	3.55373	3							

Aircraft responses summarized over each profile section.

ProView Screenshot Showing External Acceleration, Unweighted and Weighted

Output Text for External Acceleration

Summary of External Acceleration Data File Properties

Original accel data file = G:\Tech Transfer 2014\HST10031 CG Accel Short.csv

Total length of record = 28.5 seconds

Original record step length = 0.004267 seconds

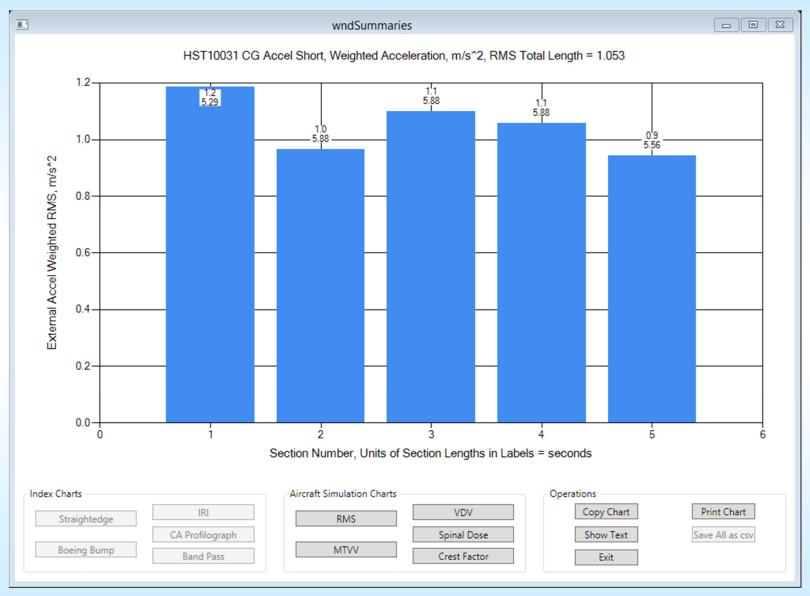
Weighted record step length = 0.006250 seconds

ISO Weighted acceleration computed over the full length of the profile.

Units	Min	Max	RMS
g	-0.43201	0.38166	0.10740
m/s^2	-4.23654	3.74285	1.05326

ISO Index values computed over the full length of the profile.

Type	RMS	Crest Factor	MTVV	VDV	Spinal Dose
Index	1.05326	4.02231	1.53650	11.45834	4.92287


External acceleration summarized over each profile section.

Section	Length	RMS	Average	Max
No.	seconds	g	g	g
1	5.3	0.12088	-0.00242	0.31773
2	5.9	0.09850	-0.00077	0.32825
3	5.9	0.11205	-0.00049	0.38114
4	5.9	0.10787	0.00061	0.38166
5	5.6	0.09610	0.00000	0.34822

Weighted acceleration ISO Index values, m/s^2 , computed over each profile section.

Section	Length	RMS	Crest	MTVV	VDV	Spinal
No.	seconds		Factor			Dose
1	5.3	1.18564	2.92801	1.30262	8.17041	3.84819
2		0.96604	3.35132	1.13662	7.08449	3.07914
3	5.9	1.09881	3.85557	1.53650	8.19554	4.37916
4	5.9	1.05786	3.53813	1.37284	7.69574	3.46132
5	5.6	0.94245	3.62345	1.14813	6.83341	3.13895

RMS Bar Chart From Show Charts

FAA Worldwide Airport Technology Transfer Conference See the paper for more details on ProFAA and ProView and a comparison between the 727-100QC full-scale and simulation results.

Thank you for your attention.